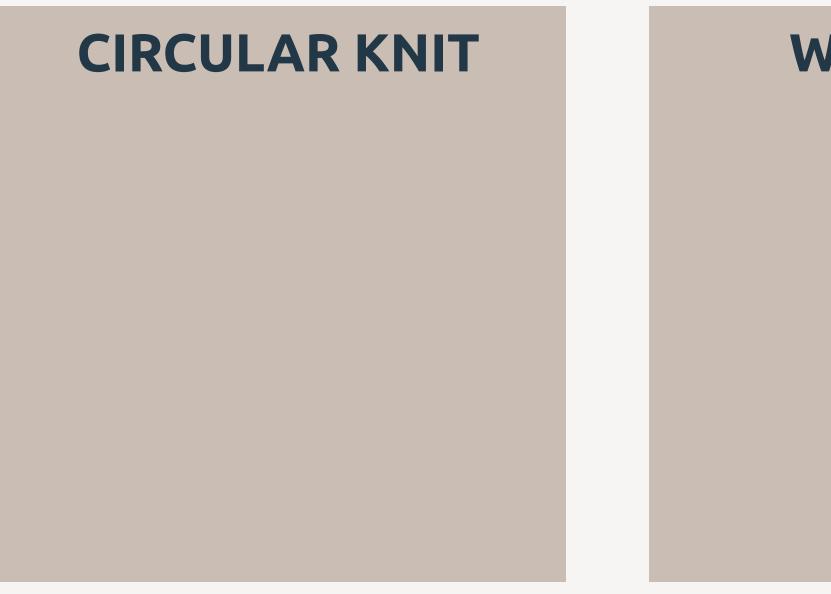
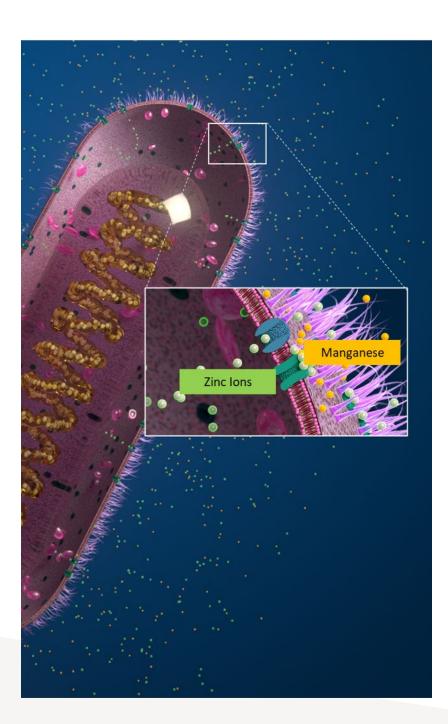
Application of Zinc Ion Embedded Nylon Antimicrobial Technology for Design Flexibility of Wound Dressings

Dr. Kyoung Woo Kim, Keh Dema, Victor Kholodkov, Dr. Kevin Urman, Dr. Rajib Mondal Ascend Performance Materials, Texas, United States

Introduction

Wound healing is a dynamic and complex process that follows several phases of healing.1 Advanced wound dressings are specifically designed to promote these phases and/or a particular pathological condition. Most wound dressings are composite products with a combination of materials to incorporate various features, including antimicrobial properties. Incorporating the antimicrobial technology in the dressing typically involves additional manufacturing steps and is sometimes not feasible for certain components due to material processing limitations. An ovel polymer based on high performance nylon which incorporates and maintains zinc in its ionic form was developed. It was converted into multiple forms with different features without any additional coating, chemicals, or textile processing to offer design flexibility of modern wound dressings.


Zinc–Effective, Yet Safe and Allnatural Antimicrobial Option


- Zinc has proven therapeutic benefits and is commonly applied to soothe the skin.
- Zn²+ induces Mn²+ starvation, resulting in bactericidal behavior²
- Active Zinc ingredient is labeled GRAS, or Generally Regarded as Safe, by the U.S. Food and **Drug Administration**
- Various end-forms demonstrated effective antibacterial and antifungal properties while tested to be non-cytotoxic while exposed to exposing the extract fluid to mouse fibroblast cells.

Independent laboratories have tested various end forms for efficacy against common bacterial and fungal strains

Microbe	Efficacy	Test Method
Staphylococcus aureus	>99.99% ⁱ	ISO 20743
Klebsiella pneumoniae	>99.99% ⁱ	ISO 20743
Escherichia coli	>99.99% ⁱ	ASTM E3160
Candida albicans	99.3% ⁱⁱ	ASTM E3160
Candida auris	99.3% ⁱⁱ	ASTM E3160
Aspergillus brasiliensis Penicillium funiculosum Chaetomium globosum Trichoderma virens Aureobasidium pullulans	No Growth	ASTM G21

ⁱTesting conducted on Acteev Protect fabric made with 70 denier/68 filament yarn and filaments. ii Testing conducted on Acteev Protect 34 gsm spunbond material.

WARP KNIT

Design Flexibility of Wound Dressings

- Wound dressings are composed of various layers of materials, having different moisture and pressure management properties.
- Desired antimicrobial properties in these layers are typically imparted by topical treatment or by using electroplated fibers/textiles

Electroplated Fibers and Textiles

Topical Treatment

Novel Zinc **Embedded Polymer** absorption, abrasion.

some end-forms.

absorption, conformability.

Example of Simplified Antimicrobial Wound Pad Manufacturing Process

Zinc ion embedded Nylon 66

Staple Fiber (1.7 dpf, 38 mm)

Variable physical properties of different end-forms made with Zinc Ion Embedded Nylon

Form Factor	Basis Weight	Thickness	Apparent Density	Air Permeability	Wicking	Bulk Absorption
	gsm	mm	g/cc	cfm	mm	g/g (%)
	ASTM D3776	Min press. 0.1 kPa		ASTM D737	Ref. # 3	Ref. # 3
Circular Knit	125	0.51	0.245	276	83	278%
Warp Knit	285	0.65	0.439	39	3	145%
Spunbond-1	10	0.11	0.091	>1500	1	916%
Spunbond-2	34	0.26	0.131	1065	2	462%
Spunlace-1	60	0.76	0.079	529	42	770%
Spunlace-2	110	0.74	0.149	258	67	487%
Needlepunch-1	120	2.19	0.055	445	18	1543%
Needlepunch-2	300	3.51	0.085	180	38	1100%
Needlepunch-3	650	5.57	0.117	40	70	800%

SPUNBOND

- Limits dyeability and physical properties: Wicking,
- Applied after dyeing through dye bath, pad, plasma treatment, foams, and spray coating. Limited to
- Zinc added during the polymerization process, leaving Zinc ions dispersed at the molecular level. Maintains nylon properties: dyeability, wicking,

Needle Punch Nonwoven Soft, moisture wicking, highly absorptive, anti-odor, anti-microbial

SPUNLACE

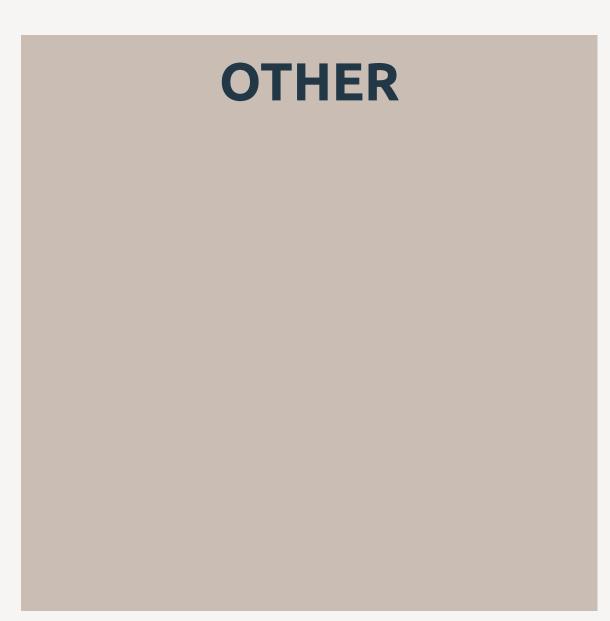
Methods

- 1. During polymerization of nylon 66, active Zinc was introduced.
- 2. Zinc polymer was utilized to create various forms, such as spunbond, spunlace (hydroentanglement), needle-punch non-woven, warp-knit, and circular knit textiles.
- 3. Basis weight, air permeability, moisture wicking, bulk absorption were measured as per ASTM methods. Dyeability, cytotoxicity were tested. 4. Retention of Zinc was determined by before and after laundering analysis after 100 washes as per AATCC protocol.
- 5. Antimicrobial efficacy against gram-positive and gram-negative bacterial strains using industry standard ISO20743 as a testing framework was conducted.


Results and Discussion

S. aureus and K. pneumonia.

Conclusion


References:

- 1. Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. [Updated 2022 Aug 25]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470443/
- 2. McDevittCA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 2011 Nov;7(11):e1002357.
- 3. Cruz J, Leitão A, Silveira D, Pichandi S, Pinto M, Fangueiro R. Study of moisture absorption characteristics of cotton terry towel fabrics. Procedia Engineering, 2017, vol. 200, p389-398.

- Simplified and streamlined manufacturing process commonly used for fibers, was adopted without any manufacturing challenges to produce various antimicrobial substrates with zinc embedded nylon technology. The versatility in performances was demonstrated. Apparent densities of 0.1 g/cc to 0.2 g/ cc were achieved. Vertical wicking was tuned from 0 mm to 100 mm. Bulk absorptions of these forms were also varied from 2 to 15 times of its initial weight. Laundering 100 times does not impact the concentration of the active ingredient in the polymer with zinc retention over 90%. All these forms showed very good antibacterial properties, up to 5-7 log reduction, while tested against
- Modern wound dressing are composite products with various layers providing specific moisture and pressure management characteristics along with antimicrobial properties. This novel polymer technology demonstrated the capability of achieving variable properties, while maintaining good antibacterial efficacy. A simplified manufacturing process is now possible that can be incorporated to design modern antimicrobial wound dressings. Performance against skin and wounds would need to be studied.

